为什么需要Adler-32算法关于校验码算法,我们最熟悉的算法应该是CRC校验算法,那么有了CRC校验算法之后,为什么还要提出这样一个算法呢?
这个算法比CRC算法更加快速,但是安全性不如CRC.换句话说,就是在安全性和速度之间做了一个权衡。
以前在wx里面抠的
|
Adler32 | 整数型 | | |
cursor | 整数型 | | | | buf | 整数型 | | | | len | 整数型 | | | | 置入代码 ({ 139, 69, 8, 83, 139, 93, 16, 87, 139, 248, 15, 183, 200, 193, 239, 16, 131, 251, 1, 117, 49, 139, 69, 12, 15, 182, 0, 3, 200, 129, 249, 241, 255, 0, 0, 141, 145, 15, 0, 255, 255, 15, 66, 209, 3, 250, 129, 255, 241, 255, 0, 0, 141, 135, 15, 0, 255, 255, 15, 66, 199, 193, 224, 16, 95, 11, 194, 91, 93, 195, 86, 139, 117, 12, 133, 246, 117, 8, 141, 70, 1, 94, 95, 91, 93, 195, 131, 251, 16, 115, 63, 133, 219, 116, 15, 15, 182, 6, 141, 118, 1, 3, 200, 3, 249, 131, 235, 1, 117, 241, 129, 249, 241, 255, 0, 0, 141, 177, 15, 0, 255, 255, 184, 113, 128, 7, 128, 15, 66, 241, 247, 231, 193, 234, 15, 139, 194, 193, 224, 4, 43, 194, 3, 199, 193, 224, 16, 11, 198, 94, 95, 91, 93, 195, 129, 251, 176, 21, 0, 0, 15, 130, 224, 0, 0, 0, 184, 175, 169, 110, 94, 247, 227, 193, 234, 11, 137, 85, 8, 102, 102, 15, 31, 132, 0, 0, 0, 0, 0, 129, 235, 176, 21, 0, 0, 186, 91, 1, 0, 0, 15, 31, 68, 0, 0, 15, 182, 6, 3, 200, 15, 182, 70, 1, 3, 249, 3, 200, 15, 182, 70, 2, 3, 249, 3, 200, 15, 182, 70, 3, 3, 249, 3, 200, 15, 182, 70, 4, 3, 249, 3, 200, 15, 182, 70, 5, 3, 249, 3, 200, 15, 182, 70, 6, 3, 249, 3, 200, 15, 182, 70, 7, 3, 249, 3, 200, 15, 182, 70, 8, 3, 249, 3, 200, 15, 182, 70, 9, 3, 249, 3, 200, 15, 182, 70, 10, 3, 249, 3, 200, 15, 182, 70, 11, 3, 249, 3, 200, 15, 182, 70, 12, 3, 249, 3, 200, 15, 182, 70, 13, 3, 249, 3, 200, 15, 182, 70, 14, 3, 249, 3, 200, 15, 182, 70, 15, 3, 249, 131, 198, 16, 3, 200, 3, 249, 131, 234, 1, 15, 133, 117, 255, 255, 255, 184, 113, 128, 7, 128, 247, 225, 193, 234, 15, 105, 194, 15, 0, 255, 255, 3, 200, 184, 113, 128, 7, 128, 247, 231, 193, 234, 15, 105, 194, 15, 0, 255, 255, 3, 248, 131, 109, 8, 1, 15, 133, 55, 255, 255, 255, 133, 219, 15, 132, 212, 0, 0, 0, 131, 251, 16, 15, 130, 148, 0, 0, 0, 139, 211, 193, 234, 4, 144, 15, 182, 6, 131, 235, 16, 3, 200, 15, 182, 70, 1, 3, 249, 3, 200, 15, 182, 70, 2, 3, 249, 3, 200, 15, 182, 70, 3, 3, 249, 3, 200, 15, 182, 70, 4, 3, 249, 3, 200, 15, 182, 70, 5, 3, 249, 3, 200, 15, 182, 70, 6, 3, 249, 3, 200, 15, 182, 70, 7, 3, 249, 3, 200, 15, 182, 70, 8, 3, 249, 3, 200, 15, 182, 70, 9, 3, 249, 3, 200, 15, 182, 70, 10, 3, 249, 3, 200, 15, 182, 70, 11, 3, 249, 3, 200, 15, 182, 70, 12, 3, 249, 3, 200, 15, 182, 70, 13, 3, 249, 3, 200, 15, 182, 70, 14, 3, 249, 3, 200, 15, 182, 70, 15, 3, 249, 131, 198, 16, 3, 200, 3, 249, 131, 234, 1, 15, 133, 114, 255, 255, 255, 133, 219, 116, 15, 15, 182, 6, 141, 118, 1, 3, 200, 3, 249, 131, 235, 1, 117, 241, 184, 113, 128, 7, 128, 247, 225, 193, 234, 15, 105, 194, 15, 0, 255, 255, 3, 200, 184, 113, 128, 7, 128, 247, 231, 193, 234, 15, 105, 210, 15, 0, 255, 255, 3, 250, 193, 231, 16, 11, 249, 94, 139, 199, 95, 91, 93, 195 })返回 (0 )
|